Efficient Constrained Tensor Factorization by Alternating Optimization with Primal-Dual Splitting
نویسندگان
چکیده
Tensor factorization with hard and/or soft constraints has played an important role in signal processing and data analysis. However, existing algorithms for constrained tensor factorization have two drawbacks: (i) they require matrixinversion; and (ii) they cannot (or at least is very difficult to) handle structured regularizations. We propose a new tensor factorization algorithm that circumvents these drawbacks. The proposed method is built upon alternating optimization, and each subproblem is solved by a primal-dual splitting algorithm, yielding an efficient and flexible algorithmic framework to constrained tensor factorization. The advantages of the proposedmethod over a state-of-the-art constrained tensor factorization algorithm, called AO-ADMM, are demonstrated on regularized nonnegative tensor factorization.
منابع مشابه
Primal-Dual Decomposition by Operator Splitting and Applications to Image Deblurring
We present primal-dual decomposition algorithms for convex optimization problems with cost functions f(x) + g(Ax), where f and g have inexpensive proximal operators and A can be decomposed as a sum of two structured matrices. The methods are based on the Douglas–Rachford splitting algorithm applied to various splittings of the primal-dual optimality conditions. We discuss applications to image ...
متن کاملOSQP: An Operator Splitting Solver for Quadratic Programs
We present a general purpose solver for quadratic programs based on the alternating direction method of multipliers, employing a novel operator splitting technique that requires the solution of a quasi-definite linear system with the same coefficient matrix in each iteration. Our algorithm is very robust, placing no requirements on the problem data such as positive definiteness of the objective...
متن کاملA relaxed customized proximal point algorithm for separable convex programming
The alternating direction method (ADM) is classical for solving a linearly constrained separable convex programming problem (primal problem), and it is well known that ADM is essentially the application of a concrete form of the proximal point algorithm (PPA) (more precisely, the Douglas-Rachford splitting method) to the corresponding dual problem. This paper shows that an efficient method comp...
متن کاملLocal Linear Convergence Analysis of Primal–Dual Splitting Methods
In this paper, we study the local linear convergence properties of a versatile class of Primal–Dual splitting methods for minimizing composite non-smooth convex optimization problems. Under the assumption that the non-smooth components of the problem are partly smooth relative to smooth manifolds, we present a unified local convergence analysis framework for these Primal–Dual splitting methods....
متن کاملEfficient algorithms for 'universally' constrained matrix and tensor factorization
We propose a general algorithmic framework for constrained matrix and tensor factorization, which is widely used in unsupervised learning. The new framework is a hybrid between alternating optimization (AO) and the alternating direction method of multipliers (ADMM): each matrix factor is updated in turn, using ADMM. This combination can naturally accommodate a great variety of constraints on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.00603 شماره
صفحات -
تاریخ انتشار 2017